
Article https://doi.org/10.1038/s41467-025-65918-2

Ion sensing based on frequency-dependent
physico-chemical processes at electrode/
electrolyte interfaces
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Ions play a fundamental role in solid-liquid interface processes, whether as
essential or undesirable components, highlighting the need for precise and
quantitative real-time monitoring. Electrochemical sensors are identified as
promising tools, particularly for field-deployable applications. However, con-
ventional electrochemical sensing is inherently restricted to redox-active
species and is often single use, constraining its scope. This study presents
electrochemical impedance spectroscopy as an alternative for ion detection,
utilizing physico-chemical interactions at the electrode-electrolyte interface.
We introduce a first-principles model that describes the interfacial impedance
behavior and shows how ion specific processes shape the impedance
response. Based on this framework, an extensive dataset is compiled, and a
machine learning model is trained to predict electrolyte composition with
consistent accuracy, demonstrating detection limits at the parts-per-billion
level. The findings indicate that this method has considerable potential as a
real-time method for ion sensing, providing a perspective on selectivity and
sensitivity beyond traditional electrochemical approaches. This work could
serve as a foundation for advanced models of impedance behavior, and
development of impedance-based sensors with applicability in complex
environments, including biological fluids and industrial liquids.

Real-time monitoring of chemical changes in solutions is a crucial
aspect for addressing pressing challenges in diverse fields1.
Applications such as detecting contaminants in water, analyzing
biomarkers in biological fluids, and ensuring the accuracy of pro-
cesses as well as the safety of consumables require analytical
techniques that are not only accurate and sensitive but rapid, cost-
effective, and non-invasive2–4. Electrochemical sensors have
emerged as promising candidates due to their affordability, simpli-
city, and suitability for miniaturization5,6. However, conventional
amperometric-potentiometric electrochemical sensors primarily
depend on redox reactions, making them unsuitable for substances
that do not undergo redox processes. Additionally, these sensors

involve electron transfer mechanisms that degrade the electrode
surface over time, reducing their reusability and shortening their
operational lifespan7. Moreover, these sensors carry the risk of
altering the solution composition during measurements8,9. How-
ever, alternating current (AC) techniques, like electrochemical
impedance spectroscopy (EIS), offer deeper insights into electrode-
electrolyte interface dynamics. Under small-amplitude conditions
that preserve linearity, EIS can probe the interfacial structure with
minimal and reversible perturbation. This allows for the character-
ization and quantification of electrolyte composition while miti-
gating the possible irreversible compositional changes and
limitations often associated with direct current (DC) methods10.
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When a solid electrode contacts an electrolyte, an interface
known as the electric double layer (EDL), a structured arrangement of
ions, counter-ions, and solvent molecules forms11. The structure of the
EDL depends on properties of both the electrode, such as roughness
and work function, and the electrolyte, including composition and
concentration12–15. While significant progress has been made in char-
acterizing the EDL under non-faradaic conditions (i.e., in the absence
of any redox reaction), its microscopic structure and its correlation
with frequency domain electrochemical signals is not fully
understood11,16.

In recent studies, EIS has been increasingly explored for ion
detection17. Many of these investigations have employed simplified
metrics such as solution conductivity18–20 or EDL capacitance17. To
enhance selectivity, strategies involving ion-selective membranes20 or
surface functionalization21–23, have been adopted.While thesemethods
can enhance sensing, they also introduce additional complexity and
reduce sensor durability. Some approaches also integrate com-
plementary techniques or rely on external calibration to aid in inter-
preting EIS data18,19,24,25. Recent advancements have begun to explore
the use of full-spectrum impedance data in membrane-free systems,
signaling progress toward more comprehensive sensing strategies.
However, there remains significant potential to further exploit the
frequency-dependent characteristics of impedance for richer inter-
pretation of the electrode-electrolyte interface.

EIS provides rich, multidimensional insights into interfacial
processes26 enabling the assessment of the electrolyte composition on
the EDL.While it does not directly identify chemical species, it contains
information on how physicochemical properties, such as ionic mobi-
lity, permittivity, and interfacial structure, affect the system’s electrical
response27. It is highly convoluted by the complex, coupled EDL
responses of the multiple components in the electrified interface.
Therefore, the accurate interpretation of EIS data hinges on a com-
prehensive understanding of the EDL under AC conditions28. Tradi-
tional methodologies, which often rely on empirical fitting models
such as equivalent electrical circuits10,29, fall short of capturing the
actual physical and chemical phenomenaoccurring at the interface30,31.
This lack of knowledge hampers the full exploitation of EIS as a ver-
satile tool for electrochemical analysis and raises concerns about the
reliability of its data interpretations, as observed responses often
appear without a solid theoretical basis.

To address this gap, a comprehensive theoretical framework for
EISmust simultaneously capture the static properties of the electrode-
electrolyte interface-such as EDL capacitance-and dynamic behavior,
including non-ideal impedance phenomena such as constant phase
element (CPE)32. Establishing clear connections between these static
and dynamic aspects is essential to unravel the intricate relationships
between the structural characteristics of the interface and the impe-
dance responses. In this work, we aim to provide such a framework by
developing a continuum-basedmodel that integrates fundamental ion
properties-such as ion size, mobility, and adsorption-into a unified
description of the electrode-electrolyte interface, allowing explicit
linkage of structural interfacial changes induced by electrolyte com-
position to observed impedance behavior.

Results and discussion
Physico-chemical processes at the EDL
Our model is built on the collective behavior of the electrode-
electrolyte interface, where ions, counterions, and solvent molecules
organize under the influence of electrostatic forces, ion-surface
interactions, solvation effects, and thermal motion. Although the
exact structure of the EDL remains elusive, computational modeling
and experimental analysis14,16,33–35 provide critical insights. Despite its
complexity, a well-designed continuum model can capture key EDL
electrochemical properties35. To understand its impedance response,
we first examine the fundamental interfacial processes that govern

charge dynamics. Figure 1 presents themodifiedGouy-Chapman-Stern
(GCS) model, refined as the basis for this study.

At the electrode surface, the electrostatic potential induces ion
accumulation at the interface, forming a depleted region near the
electrode known as theHelmholtz (Stern) layer. As illustrated in Fig. 1a,
the thickness of this layer is potential-dependent, governed by the
competition between electrostatic attraction and hydration effects16. A
higher (Volta) potential enhances electrostatic forces, drawing ions
closer to the surface while necessitating partial or complete dehydra-
tion of their hydration shells. Anions, which exhibit a greater pro-
pensity for surface adsorption, undergo significant dehydration under
strong electric fields, whereas cations experience only partial sup-
pression of their hydration shells16. This results in a generally thinner
Helmholtz layer for anions-determined by their intrinsic ionic radii-
compared to cations, whose effective size is dictated by their hydrated
radii (more information is provided in the Supplementary Information
section S1.2). Additionally, water molecules within the Helmholtz layer
align under the influence of the intense local electric field (1–10 V
nm−1)33, leading to permittivity saturation in this region (more infor-
mation is provided in SI section S1.1). The relative permittivity reaches
its minimumwithin the Stern layer. As the distance from the electrode
increases, the electric field weakens, leading to a gradual rise in per-
mittivity toward the bulk electrolyte33,36.

Beyond the Helmholtz layer, the interface transitions into a
compact layer where ion concentration reaches a maximum, Cmax,
constrained by steric effects and determined by the hydration radii of
the ions (more information is provided in SI section S1). In this region,
the permittivity increases as the electric field weakens, following a
trend similar to that of the Helmholtz layer. After the compact layer, a
diffuse layer extends into the electrolyte, where ion concentration
progressively decreases toward the bulk solution. In these interfacial
regions, the electric field declines sharply, and the solvent permittivity
recovers to its unsaturated bulk value. Moving away from the inter-
facial region, the bulk electrolyte is present, where ion concentrations
stabilize at their bulk equilibrium value, c0.

Figure 1b illustrates the simulated differential capacitance and
surface charge density as functions of the electrode potential. The
model successfully reproduces the characteristic camel-shaped dif-
ferential capacitance curve observed in dilute electrolytes37–39. At low
(Volta) potentials, capacitance increases as the electric field enhances
ion accumulation near the electrode. As the (Volta) potential rises
further, the capacitance reaches a peak before declining, forming the
characteristic hump of the camel curve. This behavior arises from the
saturation of ion density near the electrode and the associated
reduction in the local dielectric constant. Notably, the hump at posi-
tive (Volta) potentials is more pronounced than at negative (Volta)
potentials, as anions can approach the electrode more closely than
cations due to differences in hydration properties.

Building on the ability of the refined GCS model in capturing the
steady-state structure of the EDL,we extended our analysis to simulate
its impedance response. EIS is performed by introducing a small-
amplitude AC perturbation around the steady-state condition, ensur-
ing that the system remains within the linear regime and that the
perturbation does not significantly alter the interfacial structure40.
Under these conditions, the electrochemical impedance, ZEDL, can be
formulated as a one-dimensional series of discrete layers normal to the
electrode surface. Each layer contributes to the total impedance
through ionic conduction (resistive behavior) and/or displacement
conduction (capacitive behavior), represented as a local parallel
resistor-capacitor (RC) element. This approach assumes lateral
homogeneity and uniform current distribution across the electrode
surface, which is justified for small, flat electrodes where spatial het-
erogeneity is minimal41.

The specific capacitance and ionic conductivity of each interfacial
layer are determined by its relative permittivity and ion mobility,
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respectively. The permittivity values are obtained from the steady-
state model, while conductivity depends on both ionic concentration
and mobility within each region42,43. As shown in the steady-state
modeling, ion concentration varies significantly across the interface. In
regions of high ionic concentration, the intense local electric field and
reduced intermolecular spacing limit the availability of free ions for
conduction, as short-range interactions become dominant44. Further-
more, ionmobility decreases due to ion-ion collisions and other short-
range interactions45, leading to a sharp increase in resistance and a
decline in conductivity as the concentration rises (see SI section S2.1
for details). Figure 1c presents the simulated ionic conductivity and
relative permittivity profiles under different (Volta) potentials. At high
(Volta) potentials, permittivity saturation occurs due to the strong
electric field, while ionic conductivity drops to zero in the Helmholtz
and compact layers, reflecting the absence of mobile ions. At lower

(Volta) potentials, neither ionic concentration nor permittivity reaches
saturation, aligning with the expected physico-chemical behavior at
the interface.

Impedance non-ideality: a revised insight into the origin of
the CPE
The elctrode/electrolyte interface often exhibits non-ideal capacitive
behavior at low frequencies, commonly described by a constant phase
element (CPE)32. Despite its ubiquitous presence in electrochemical
systems, the fundamental origin of CPE behavior remains a subject of
debate. Conventional explanations typically attribute capacitance
dispersion to non-uniform current distribution caused by surface
roughness, or to spatial variations in interfacial resistance and capa-
citance arising from surface heterogeneities-including differences in
crystallographic orientation, defects, porosity, and even the cell

Fig. 1 | Representationof the electrode-electrolyte interface andmodel-derived
properties. a Graphical illustration of the developed model exhibiting the elec-
trode/electrolyte interface under cathodic (left) and anodic (right) potentials. The
blue and red curves represent cation and anion concentration profile, respectively,
in relation to the (Volta) potential (indicated by the color bar at the top). The
background shading reflects the relative permittivity distribution, with corre-
sponding values shown in the color bar. Spheres denote atom types as follows:
cations (blue), anions (dark orange), water molecules (red oxygen with two white
hydrogens), and electrode atoms (yellow). The cation and anion spheres represent
generic ions and are not assigned to specific species. The electrode-electrolyte

interface is modeled as a series connection of locally parallel RC elements, each
representing a thin layer normal to the electrode surface. This one-dimensional
arrangement assumes lateral homogeneity and uniform current distribution across
the electrode, valid for flat, small-area electrodes. The spatial profile of each layer’s
resistance and capacitance reflects local ionmobility and permittivity, respectively.
b Differential capacitance and surface charge density predicted by the developed
model - model parameter values are listed in supplementary table S3. c Profiles of
permittivity and conductivity at different (Volta) potentials, demonstrating spatial
variations at the interface - model parameter values are summarized in the sup-
plementary table S3.
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configuration46–48.While these factorsmay contribute to time-constant
dispersion, their influence predominantly manifests at higher fre-
quencies, which does not fully account for the observed CPE behavior.
Similarly, spatial variations in charge-transfer kinetics across the elec-
trode surface provide only a minor contribution to impedance
dispersion32.

To address this discrepancy, our model attributes CPE behavior
to the non-uniform distribution of resistance and capacitance
resulting from the formation of compact and diffusion layers that
extend into the bulk electrolyte - contrasting with conventional
surface-based interpretations. It has been demonstrated that under
certain conditions, a distribution of time constants arises as a direct
consequence of coupled spatial variations in conductivity and per-
mittivity, leading to non-ideal CPE behavior49,50 in a certain range of
frequencies. Note that we excluded ion-surface and ion-solvent
interactions governing the distribution of relative permittivity
to avoid unnecessary complexity. Although the distribution of
resistance and capacitance across the interface may not be the
sole cause of CPE behavior, it explains the presence of CPE, even in

the case of atomically flat blocking electrodes within the double-
layer potential window.

Figure 2a illustrates the characteristic frequency (f c =
1
τ =

1
RC) as a

function of distance from the electrode at various (Volta) potentials. At
the electrode surface, fc is initially zero, indicating purely capacitive
behavior in the absence of free ions within the Helmholtz layer.
Notably, within this region, the relative permittivity is at its lowest due
to the highly ordered alignment of water molecules under the intense
local electric field. As the system transitions into the compact layer, fc
remains near zero, as ion conduction is still negligible due to the
scarcity of free ions. In this layer, the relative permittivity gradually
increases as the electric field weakens across the Helmholtz and
compact layers. Upon reaching the diffusion layer, fc begins to rise due
to the increasing presence of mobile ions, peaking in the megahertz
range where ionic conduction is most pronounced. Therefore, a CPE
behavior can be expected across the frequency range from zero to
megahertz due to the coupled distribution of conductivity and per-
mittivity in the compact and diffusion layers. Beyond this peak, fc
decreases as ion concentration declines, reducing the number of

Fig. 2 | CPE behavior of the electrode-electrolyte interface model. a Profile of fc
at the interface for various potentials, showing a distribution ranging from near
zero to themegahertz range, attributed to the formation of a compact layer at high
potentials. model parameter values are summarized in the supplementary table S3.
b Nyquist plot of interface impedance, highlighting CPE behavior at low fre-
quencies; The main plot is displayed with a 10:1 y-to-x axis ratio to emphasize CPE
changes, while the inset shows the same plot in an ortho-normed, square format.

The color legend is the same as in panel (a) model parameter values are summar-
ized in the supplementary table S3. c Profile of CPE exponent as a function of
electrode potential, illustrating potential-dependent CPE behavior compared to
experimental CPE exponent for Au/10mM NaF solution. d Comparison of CPE
exponent for different ionic hydration shell sizes, as predicted by the developed
model, alongside experimental results for Pt/10mM zinc, cadmium, and lead
solution.
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charge carriers available for conduction. In the bulk electrolyte, fc
stabilizes at a value dictated by the ionic conductivity of the electrolyte
and the bulk permittivity of the solvent. At frequencies beyond this
point, EIS ceases to provide information on interfacial ion dynamics, as
the impedance response becomes predominantly governed by the
intrinsic dielectric properties of the solvent-water in this case. At low
potentials relative to the point of zero charge (PZC), the characteristic
distribution of time constants in low frequency is absent. CPE behavior
becomes evident only when the (Volta) potential surpasses a critical
threshold, leading to the formation of a compact layer.

Figure 2b presents the impedance response calculated using our
model across different (Volta) potentials. Near the PZC, CPE behavior is
not observed, as neither permittivity nor conductivity exhibits satura-
tion. However, as the potential increases and ion concentration reaches
levels where conductivity becomes maximized, the onset of CPE beha-
vior occurs. Figure 2c further illustrates the effect of electrode potential
on the CPE parameter. Around the PZC, the system behaves as an ideal
capacitor, but as the (Volta) potential increases, the deviation from ideal
capacitive behavior grows, leading to amore pronouncedCPE response.
At sufficiently high potentials, the non-uniformity in conductivity
extends further from the electrodedue to the thickening of the compact
layer, while permittivity saturation remains confined to this region
(Fig. 1c). As a result, the spatial separation between the regions of con-
ductivity and permittivity non-uniformity increases, gradually restoring
a more ideal capacitive behavior.

The distinctive nature of the CPE lies in its correlation with the
formation of the compact layer and the mobility saturation effect
caused by the finite size of ions. Figure 2d presents the predicted CPE
exponents as a function of the hydration shell radius of cations. The
model predicts that larger hydration shell sizes lead to greater devia-
tions from ideal capacitive behavior, as increased ion size enhances
spatial heterogeneity in both conductivity and permittivity, reinfor-
cing the CPE effect. This trend is consistent with experimental obser-
vations illustrated in the same figure. It can be seen that the non-
ideality for lead ions is more pronounced than for cadmium, which, in
turn, has a larger hydration shell radius than zinc.

Frequency-dependent behavior of the EDL: influence of the ion-
specific fingerprint
As discussed earlier, the structure of the EDL is strongly influenced by
the intrinsic properties of ions. While some properties primarily affect
the steady-state behavior of the EDL,many others-such as ionmobility-
related parameters-manifest predominantly in AC impedance
characteristics.

The general behavior of electrochemical impedance exhibits non-
ideal capacitive characteristics at low frequencies and resistive beha-
vior at high frequencies27. At low frequencies, the capacitive response
arises from the high time constants of the Helmholtz and compact
layers, followed by a decreasing time constant in the diffusion layer.
This results in a high CPE impedance at low frequencies51. In this
regime, the impedance contribution of layers with lower time con-
stants is overshadowed by the dominant effect of the Helmholtz and
compact layers, making their influence negligible in the total impe-
dance. On the other hand, at high frequencies, the oscillation period
becomesmuch shorter than the interfacial time constants, causing the
interface to behave as a short circuit. As a result, its impedance
becomes negligible compared to the bulk electrolyte resistance, which
dominates the total impedance, leading to the observed resistive
behavior at high frequencies27.

Our model predicts that in the transition region between low and
high frequencies, the diffusion layer time constant falls within a range
where the distribution of time constants significantly influences the
impedance transition. This intermediate frequency range marks
the gradual shift from capacitive to resistive behavior, governed by the
interplay between interfacial ion dynamics. The nature of this

transition is highly dependent on ion properties such as ionic radius,
hydration shell radii, and mobility, which dictate how ions respond to
the applied AC perturbation.

Figure 3a, b model the impact of the mobility saturation (B)
relative to its reference value on the impedance response for ions of
the same hydration shell size. While this parameter is closely related to
ion size, it is also affected by ion-solvent and ion-ion interactions. By
varying this parameter, the steady-state properties remain unchanged,
as the collision parameter influences only the dynamic impedance
behavior. Therefore, at low frequencies, the impedance response is
unaffected by, as this regime primarily reflects the properties of the
Helmholtz and compact layers. However, the effect of it becomes
evident during the transition from capacitive to resistive behavior,
where it influences the time constants in the diffusion region. In the
high-frequency regime, againmobility saturation has no impact on the
resistive part of the impedance, as this region is dominated by bulk
properties.

Experimental results for Pb(NO3)2, Cd(NO3)2 and Zn(NO3)2, pro-
vided in Figure 3c, d support these findings. Despite their close ionic
radii, lead, zinc, and cadmium exhibit distinct impedance behaviors.
This difference cannot be attributed to mobility (μ) alone, as the bulk
layer impedance (high-frequency regime) is identical for the ions.
Additionally, it is not due to ion adsorption or ion-electrode interac-
tions, since the low-frequency impedance (Helmholtz and compact
layers) is also similar.

The consistent trend observed for different ions at the transition
frequency, both in modeling and experiments, indicates that factors
beyond size and basicmobility play a crucial role in shaping the overall
impedance response. Variations in ion-solvent interactions, along with
differences in how ions engage with the solvent and other ions in
solution, directly impact effective mobility. These interactions pro-
foundly influence impedance behavior, particularly in the transition
region. While ion-dependent behavior is not entirely unique to each
individual ion, the evidence clearly demonstrates that the “ion-specific
fingerprint" significantly dictates the interfacial response in the fre-
quency domain. This underscores the capability of impedance
response in distinguishing ion types and concentrations with high
sensitivity.

Machine learning-assisted EIS for ion detection and
quantification
Building on our model’s findings, we expect the dynamic interactions
of ions to be reflected in their impedance behavior. To investigate this,
we selected Zn2+, Cd2+, and Pb2+-ions with the same charge and similar
sizes, yet crucial for environmental monitoring. A comprehensive
dataset of over 500 EIS measurements was gathered, encompassing a
wide range of compositions, counterions, concentrations, and their
combinations (more detail can be found in themethods section and SI
section S3 and S4).

While our physicochemical model provides mechanistic insight
into how ion properties shape the impedance response, extracting
compositional information from measured spectra remains complex.
This complexity arises because relevant compositional signatures are
embedded within the intricate spectral features, particularly in the
presence of multiple ions, making direct interpretation difficult.
Inspection of the raw impedance spectra reveals that mixed-ion solu-
tions deviate non-linearly from a simple superposition of the corre-
sponding single-ion responses, with the most informative differences
concentrated in the transition-frequency regime. These observations
motivate a data-driven approach capable of integrating subtle, dis-
tributed cues across the entire spectrum. We therefore developed a
machine learning (ML)-based framework to resolve ion identity and
concentration directly from full-spectrum EIS measurements.

To expose these discriminative features to the model, we imple-
mented a targeted preprocessing pipeline (further details
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in Supplementary Information, Section S4.2) designed to amplify
composition-dependent structure while suppressing nuisance var-
iance. First, a logarithmic mapping of the real and imaginary impe-
dance compresses the several orders of magnitude dynamic range.
This step, commonly employed to visualize impedance spectra, ren-
ders ion-specific modulations more apparent across frequency. Next,
the real and imaginary parts of the spectra were resampled onto a
uniform frequency grid and concatenated into a single vector, ensur-
ing strict comparability between measurements (Fig. 4a shows repre-
sentative spectra for 10mmol L1 Zn(NO3)2, Pb(NO3)2, and their
combination). A variance-stabilizingpower transformwas then applied
to improve feature normality and reduce skewness, effectively shar-
pening feature separation - particularly in the transition-frequency
regionwhere differences betweenmixed-ion and single-ion spectra are
most pronounced (Fig. 4b). Finally, principal component analysis
(PCA) was used to concentrate ion-specific variance while attenuating
noise; retaining six components preserved 98% of the variance while
yielding a compact data representation. Together, these steps increase
the signal-to-overlap ratio in the impedance data, enabling the neural
network to identify and quantify ions from full-spectrum EIS with high
fidelity.

Figure 4c presents the aggregate distributionof prediction errors,
together with the confusion matrices for the test datasets aggregated

across all folds and random seeds. Around 75% of predictions exhibit
errors below 20%, even with pooling results from repeated cross-
validations where biased training splits can occur due to the limited
dataset size. While part of the error arises from conventional experi-
mental uncertainties-such as minor deviations in electrolyte compo-
sition, potentiostat accuracy, and non-ideal chip configurations-the
aggregation across folds and seeds represents a stringent evaluation
scenario (more details are provided in the Supplementary Information,
Section S4). Even under these conditions, the maximum mis-
classification rate in ion concentration remains below 15% considering
100pmol L1 as a threshold for ion absence, underscoring the model’s
robustness in distinguishing between ion species and its potential for
accurate ion detection and quantification.

The model’s predictive performance, evaluated for samples with
correctly predicted presence or absence across different concentra-
tion ranges, is shown in Fig. 4d. At the 100nmol L1 level-corresponding
to parts-per-billion (ppb) concentrations relevant to heavy metal ion
contamination in drinking water and biological fluids-distinguishing
between the presence and absence of ions is more challenging
(Fig. 4c). Nevertheless, when present, 75% of predictions fall within
30% error, with an average error below 8%. At the 10 μmol L1 level-
equivalent to parts-per-million (ppm) concentrations typical of was-
tewater discharge and industrial effluents-errors increase slightly, with

Fig. 3 | Effect ofmobility saturationon interfacial impedance. aBodemagnitude
plot and (b) phase plot from the model, showing the effect of the mobility-
saturation (collision) parameter on interfacial impedance. Here, “ΔB/B”denotes the
fractional change in the mobility-saturation parameter B relative to its reference
value B0, defined as ΔB/B = (B − B0)/B0. Variations in this parameter primarily affect

the transition region between the capacitive response of the EDL and the resistive
response of the bulk electrolyte. c Bode magnitude plot and (d) phase plot of
experimental impedance spectra for 10mM zinc, cadmium, and lead nitrate solu-
tions, exhibiting trends consistent with the model predictions.
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75% of predictions remaining below 36% and an average of 13%. At the
10mmol L1 level, presence/absence classification improves markedly
(Fig. 4c), but 75% of predictions stay within a 41% errormargin, with an
average error of 17%. This increase in error at higher concentrations
likely reflects the thinning of the EDL at high ionic strengths, where
bulk solution properties dominate over interfacial effects, reducing
impedance sensitivity to composition. These results highlight both the
robustness of the model across five orders of magnitude in con-
centration and the importance of electrode design in sustaining sen-
sitivity under high-conductivity conditions.

Figure 4e further validates themodel’s robustness acrossdifferent
ionic species, showing a consistent error distribution regardless of ion
type. In all cases, 75% of errors remain below 26%, with the average
error around 8% within correctly classified samples, reaffirming the
model’s reliability in distinguishing and quantifying diverse ions with
high precision. Consistent with our note that pooling repeated cross-
validations can include biased training splits due to limited sample
size, the best-5 folds exhibit a similar median error but a substantially
compressed upper tail (lower third quartile (Q3) and upper whisker)
compared with the all-fold aggregate. This pattern indicates that large
errors are primarily driven by unfavorable/imbalanced partitions
rather than model instability: when split bias is minimized, errors
tighten while the central tendency remains unchanged. We therefore
use the all-fold distribution as our conservative performance estimate
and view the best-5 as an optimistic bound, demonstrating themodel’s
intrinsic capacity and robustness.

Beyond capturing ion-specific impedance signatures, our approach
offers a key advantage over conventional DC methods-enhanced stabi-
lity over extended measurement periods. The absence of redox reac-
tions in our AC-based sensor prevents electrode degradation, ensuring
consistent results across independent measurements for each sample.
This is reflected in the low reusability error (deviation of Milli-Q (MQ)
water reference spectra measured before and after each sample), which
remained below 10% across the measurement campaign (Fig. 4f). The
repeatability error, calculated from three consecutive back-to-back
measurements on the same solution, was below 3%, confirming high
short-term consistency. Even after 250 days of operation with only
routine rinsing in MQ water, no significant degradation or fouling was
observed, underscoring the sensor’s durability. This long-term stability
makes it suitable for continuous monitoring applications, where relia-
bility and minimal maintenance are essential.

This study extends electrochemical impedance spectroscopy
from a largely empirical method to a mechanistically grounded, pre-
dictive platform for real-time ion sensing. Through a first-principles
continuum model that explicitly links ion-specific physico-chemical
properties-such as ionic radius, hydration shell structure, ion mobility
(including mobility saturation), and ion-solvent interactions-to
frequency-dependent impedance, we identify the key interfacial pro-
cesses shaping the observed spectra. In particular, variations in the
constant phase element and transition frequency arise from differ-
ences in interfacial heterogeneity and the distribution of relaxation
times, which are governed by ion-specific properties such as hydration

Fig. 4 | Machine learning-based ion detection performance. a Representative
impedance spectra for 10mM Zn(NO3)2, Pb(NO3)2, and their mixture, showing that
mixed-ion responses deviate non-linearly from a simple superposition of single-ion
spectra, with the most discriminative differences concentrated in the transition-
frequency regime. b Effect of preprocessing steps-including logarithmic scaling,
uniform resampling, variance-stabilizing power transformation-to feature separ-
ability, illustrated for same spectra. c Aggregate prediction error distribution and
confusion matrices (using 100pM as the threshold for ion absence) over all folds
and random seeds in repeated cross-validation underscoring the model’s robust-
ness against partitioningbias and experimental variability.dBoxplots of prediction

accuracy vs. concentration, comparing the aggregate of all folds/seeds (repeated
cross-validation) with the top-five performing folds. e Box plots of prediction
accuracy by ion type, comparing the aggregate of all folds/seeds (repeated cross-
validation) with the top-five performing folds. For box plots in (d, e): the center line
represents the median, box limits denote upper and lower quartiles and whiskers
indicate 1.5 × the interquartile range. f Sensor stability metrics: reusability error
(Milli-Q references before/after each sample) remainedbelow 10% and repeatability
error (three back-to-back measurements) below 3%, with no detectable degrada-
tion after 250 days of operation.

Article https://doi.org/10.1038/s41467-025-65918-2

Nature Communications |        (2025) 16:10874 7

www.nature.com/naturecommunications


shell structure, mobility, and adsorption behavior within the compact
and diffuse layers. These coupled mechanisms - especially how ions
interact with the solvent and reorganize the EDL - are responsible for
the distinct spectral fingerprints observed across ion types and con-
centrations. Our results show that non-ideal features in EIS, including
but not limited to CPE behavior, are intrinsic signatures of interfacial
structure and dynamics, not measurement artifacts. Recognizing and
modeling these features enable selective, stable, and reproducible ion
detection across a wide concentration range. Coupled with AI-assisted
interpretation, this approach achieves detection limits down to the
ppb range and remains robust over months of operation, making it
promising for applications in environmental monitoring, biomedical
diagnostics, and industrial process control.

Methods
Model development
The EIS model was developed using a steady-state/perturbation
approach. AmodifiedGCSmodel was derived for electrified electrode-
electrolyte interfaces using continuum models based on local free
energy functionals. These models account for non-uniform dielectric
constants ϵr(ϕ), ion size effects, and variable ion-surface interac-
tions ψ(x).

The GCS model is driven by minimizing the local free energy,
expressed as:

F ½ρionsðxÞ,ϕðxÞ,ψðxÞ, ciðxÞ� =
Z

� ϵr
8π

j∇ϕðxÞj2 +ρionsðxÞϕðxÞ +
Xp
i= 1

ciðxÞψðxÞ
"

�
Xp
i= 1

μi ciðxÞ � c0i ðxÞ
� �� T s½ciðxÞ� � s½c0i ðxÞ�

� �#
dx

ð1Þ

Here, x represents the distance from the electrode surface. The
first two terms describe the electrostatic interactions created by the
electric potential ϕ(x) and the ionic charge density
ρionðxÞ=

Pp
i = 1ciðxÞzi, where zi and ci denote the ion charge and con-

centration, respectively. The third term captures the interaction of the
external potential ψi(x) with the ions, which can simulate repulsive
forces (e.g., Helmholtz layer) or attractive forces (e.g., ion-surface
interactions).

The fourth term introduces a grand canonical description of the
ions by incorporating their chemical potential μi. The final term
represents the entropic contribution to the free energy, where s is the
entropy density.

By inserting the entropy density from a lattice gas model (more
details in SI S1), ion size effects are introduced, with the maximum ion
density defined by cmax, determined by the ion’s hydration shell size.

Minimizing the free energy F with respect to ϕ(x) yields the
modified Poisson-Boltzmann equation:

∇ ϵr∇ϕðxÞ
� �

+4π
Xp
i= 1

zici ϕðxÞð Þ=0 ð2Þ

This second-order differential equation is solved numerically for
varying electrode potentials. Numerical solutions provide the electric
potential, electric field, dielectric constant, and ion distribution as
functions of the distance from the electrode. The model’s results
depend on the parameters defined in the free energy expression, with
detailed parameter information provided in the supplementary
table S3.

The differential capacitance can be calculated based on electrode
potential and charge density on the surface using the Gauss law as

follow:

Qfree =
I

s
ϵE � dA ð3Þ

To simulate the EIS response of the interface, the DC permittivity
profile was extracted from the mean-field model, which relates to the
electric field strength and solvent molecule alignment at varying dis-
tances from the electrode. Using the relative permittivity and ion
concentration from the GCS model, impedance was calculated based
on displacement and ionic conductivity.

In dilute solutions, the electrolyte solution conductivity is the sum
of individual ion conductivities, expressed as:

σ =μmn exp �m
B

� �
ð4Þ

Here, σ denotes conductivity, m for ion concentration, and μi is
the ion mobility. In highly concentrated regions, high electric fields
and close ionproximity reduce the number of free ions contributing to
conduction. Beside, ion mobility, the average ion speed per unit
electric field, results from the balance between external electric field
forces and ion movement resistance, including ion-ion, ion-solvent,
and solvent-solvent interactions. As electrolyte concentration increa-
ses, molecular distances shrink, intensifying short-range interactions
and increasing resistance, thus reducing ion mobility. This behavior is
captured by the exponential decline in conductivity.

Using the permittivity profile and conductivity from Eqs. (4), an
RC model was employed to extract the EIS response. The interface
impedance is expressed as:

Z =
Z 1

0

dx
σðxÞ+ j ϵðxÞ ð5Þ

Complete details on model parameters and functional forms are
provided in the supplementary information.

EIS measurement
Experimental EIS measurements were conducted using a custom-
designed sensor. The system consisted of a pair of platinum inter-
digitated electrodes for impedance measurement and a rectangular
platinumelectrode serving as apseudo-reference. Thepseudo-reference
electrode was included solely to monitor the working electrode’s
potential, enabling accurate tracking of electrode fouling, contamina-
tion, and overall system stability over time. The impedance was strictly
measured between the working and counter electrodes. All electrodes
were fabricated on a silicon chip with a silicon nitride isolation layer.
Platinumwas deposited via physical vapor deposition (PVD), resulting in
a flat surface with a roughness of approximately 5nm. The interdigitated
design increased the effective surface area, and the 10μm spacing
between electrode fingers was optimized to minimize bulk impedance
contributions. The fabricated chips were cleaned with isopropanol and
ultrapure Milli-Q water, dried, and stored in gel boxes at controlled
room temperature (21 ± 1 °C). During measurements, if the reusability
error exceeded 10%, the chips were re-cleaned by sequential rinsingwith
Milli-Q water followed by isopropanol.

Electrolytes were prepared by dissolving lead, cadmium, and zinc
salts (Pb(NO3)2, Cd(NO3)2, Zn(NO3)2, PbCl2, CdCl2, ZnCl2, CdSO4, and
ZnSO4≥99%, Sigma-Aldrich) in MQ water, yielding concentrations of
100nmol L1, 10μmol L1, and 10 mmol L1. EIS measurements were con-
ducted under open-circuit potential (OCP) conditions using a poten-
tiostatic sinusoidal excitation (10mV amplitude, 20 points per decade;
171 data points in total), with a VSP300 potentiostat (Bio-Logic) housed
within a Faraday cage equipped with a temperature control unit to
minimize environmental noise. All experiments were performed at a

Article https://doi.org/10.1038/s41467-025-65918-2

Nature Communications |        (2025) 16:10874 8

www.nature.com/naturecommunications


controlled temperature of (21 ± 1 °C). Prior to each measurement, a 15-
minute stabilization period at OCPwas employed to ensure steady-state
conditions.MQwater EIS responseswere recordedbefore andafter each
measurement to verify electrode integrity and confirm the absence of
contamination or surface modification. Detailed measurement proce-
dures are provided in the Supplementary Information. All EIS measure-
ments reported in this work were performed using a single fabricated
chip. This choicewasmotivatedby the demonstrated long-term stability
and reusability of the device, which allowed us to carry out all experi-
ments on the same platform.

Electrochemical measurements for CPE behavior as a function of
electrode potential were performedusing an SP-200potentiostat (Bio-
Logic). A vertical electrochemical cell with a 3.5 cm2 opening area
(Redox.me) was employed. The working electrode was confined to a
1mm2 exposed area, ensuring precise control over the active electro-
chemical surface. The working electrode consisted of a polycrystalline
gold electrode with a (111) orientation (1.1 × 1.1 cm2, Arrandee).Prior to
use, the Au electrodeswere annealedwith a butaneflame for 2min and
cooled in a nitrogen atmosphere. Theywere subsequently immersed in
HCl solution (10mM) at open-circuit conditions for approximately
10 min to remove surface reconstruction and contamination. Finally,
the electrodes were extensively rinsed with ultrapure water
(18.2MΩ ⋅ cm, Milli-Q) to eliminate residual Cl− ions. A platinum wire
served as the counter electrode (redox.me), and a saturated Ag/AgCl
leakless electrode (ET072, Edaq) was used as the reference electrode.
The working and counter/reference electrodes were housed in sepa-
rate compartments of the electrochemical cell. The electrolytes for
CPEmeasurements were prepared by dissolving sodium fluoride (NaF,
≥ 99%, Sigma-Aldrich) in ultrapure water (≥ 18.2MΩ, Milli-Q). Since the
adsorption of hydrated ions such as Na+ and F− on the electrode sur-
face is limited, NaF has been chosen for the analysis. Prior to use, the
electrochemical cell was cleaned by sonication in isopropanol (IPA) for
15 minutes, followed by thorough rinsing with ultrapure water. EIS
measurements were conducted using single potential electrochemical
impedance spectroscopy (SPEIS) within a potential range from −0.1 V
to 0.8V versus Ag/AgCl, on a single Au electrode in one experimental
series. The measurements were performed over a frequency range of
0.5Hz to 1MHz using a potentiostatic sinusoidal excitation (10 mV
amplitude, 20 points per decade) under the quasi-stationary potential
determined by the SPEIS potential step. CPE values were obtained by
fitting the impedance response incrementally, starting from the lowest
frequency with the CPE impedance expression 1/[Q(jω)n] and extend-
ing the fit frequency by frequency until the relative error is below 3%.

AI-assisted ion detection
A supervised machine learning framework was developed to infer ion
identity and concentration directly from full-spectrum electro-
chemical impedance measurements. Raw spectra were preprocessed
to enhance composition-dependent features and suppress nuisance
variance: the real and imaginary components were logarithmically
transformed to compress the several orders of magnitude dynamic
range, resampled onto a uniform frequency grid to ensure compar-
ability across experiments, concatenated into a single feature vector,
and variance-stabilized using a power transform. Dimensionality was
then reduced via principal component analysis, with components
retained to preserve 98% of the variance while concentrating ion-
specific information. The resulting low-dimensional feature set was
provided as input to an ensemble of fully connected neural networks,
with dropout regularization incorporated to mitigate overfitting.
Training was performed using a composite loss function that com-
bined mean-squared error with a soft constraint enforcing overall
charge neutrality.

Model performance was assessed using 5-fold cross-validation
repeated across multiple random seeds to account for partitioning
bias, which is particularly important for limited datasets. This

procedure ensured that the reported performance reflected both the
intrinsic capability of the model and its robustness to variations in
training/test composition. Accuracy was quantified using the coeffi-
cient of determination (R2) and relative error distributions across ion
species and concentration regimes.

Further methodological details, including network architecture,
hyperparameters, and preprocessing rationale, are provided in
the Supplementary Information (Section S4).

Data availability
All data generated and used in this study are available in the 4TU.R-
esearchData repository at https://doi.org/10.4121/fd5d845a-70aa-452f-
b662-e72e1e057f34.v152. Source Data are provided with this paper.
Additional data related to this work are available from the corre-
sponding authors upon request. Source data are provided with
this paper.

Code availability
All developed code used in this study is available in the 4TU.R-
esearchData repository at https://doi.org/10.4121/086b2944-01bf-
4f7c-ba34-f75d19e154d0.v153. Additional data related to this work are
available from the corresponding authors upon request.
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